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A Generic I-BIEM Code for Electrochemical Problems

B.D. Cahan and 0. Lafe

Case Center for Electrochemical Sciences

Case Western Reserve University, Cleveland, Ohio 44106.

Abstract

A generic computer code based on the iterative boundary integral equation method (I-BIEM) is
developed for simulating a variety of electrochemical problems. In this work we have extended the
reach of the method by developing a generalized program capable of solving a wide range of elec-
trodeposition problems. The new code accomodates quite easily multi-variable problems including
those with curved boundaries, and non-linear boundary conditions. Such problems incl-de anorna-
lous codeposition of alloys, incorporating the effects of convective and diffusive mass transport:
time variant effects such as would be observed in extended growth calculations and pulse plating:
microstructural modeling with reference to nonisotropic boundary conditions and crystallographic
effects. Some interesting results (J real-life simulations are presented.
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Introduction

Complex electrochemical processes in domains of nontrivial geometries are generally difficult phe-
nomena to simulate. The advent of the iterative boundary integral equation method, I-BIEM,

developed by Cahan et al (1988), has made the efficient study of such complicated processes a
possibility using a computer of medium memory and storage capability. The flexibility that the
method allows, in terms of model refinement at no significant increase in memory or storage require-
ments, gives this new technique a major advantage over existing codes for studying electrochemical

processes.

Convective-diffusion processes are handled efficiently in a way that minimizes numerical dis-
cretization errors that commonly pollute the description of the underlying physical process when
using other numerical methods.

Since all essential numerical operations are performed solplv o- th, prohlo bo.ndary, thc

method is an excellent tool tor modeling codeposition and microstriicturing. This is because the
computed variables are precisely those pertinent boundary quantities required for the solution.
The iterative nature of the method makes for an efficient handling of transient phenomena. The
dynamic changes in geometry often occurring in electrochemical processes as in the formation of
dendrites, nodules and other surfaces including fractals are neatly simulated using the I-BIEM.

Many of these problems are governed by Poisson-type equations rather than the Laplace's
eqoation. In the latter the right hand side is zero whereas we use the term Poisson-like to describe
all other problems where the right hand side may be a constant, a known function of position
and/or time or a function of the dependent variable itself.

In the development of the new generic code the following steps have been taken:

I. Several practical electrochemical problems are described in terms of fundamental or empiri-
cally determined relationships;

2. Appropriate differential and,'or integral equations describing the system are selected

3. Algorithmic tools are then developed to incorporating these into I-BIEM.

Description of Key Electr L mical Problems

Coupled Diffusion-Current i', "tion/Anamoluis Codeposition
In many cases simple solution ot the current distribution of the problem without consideration
of other variables can provide enough information to give deep insights into the underlying

principles of a particular problem. (This is often helped by the fact that, for example, diffusion
problems have solutions similar although not, exactly those of potential distribution problems,
at least in small dimensions.) Intermediate scale problems can often be handled by the use
of simple "correction terms" based on well recognized engineering principles. In some cases.
such as in alloy deposition, this is more often than not the weak point of a treatment.

In such cases a more rigorous sol,,tion involves the simultaneous solution of multiple variables
which are interrelated at the boundaries. A rigoros treatment of anuomalous deposition, for
example, will require sinuiltaneouis solution of:

1. potential-current distribition

2. concentrations of two independent species (Ni and Co) and
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3. local p11.

Only (1) can be treated using a straight Laplacian formulation. The others have to be given
various levels of sophistication in Poisson-like formulations. For example

- Simple diffusion in a large scale system. Here only the region near the boundary is rele-
vant. Most of the bulk liquid is relatively unaltered by the electrodeposition processes.

- Several of the species, such as Ni and Co, can be treated as independent species connected
only by the boundary (kinetics etc.) equations. No cross terms in the bulk need be
considered. If the pH is a relevant variable and/or the precipitation of films occurs at
the interface cross terms for the bulk must now be considered.

" Composition Variation
Since the boundary equations are different, for each of the sub fields discussed above, the
problem of lateral variability of such deposits is not necessarily obvious. When compositional
variation in the thickness of the media is important this must be treated by developing the
time dependent solutions of the sets of equations described above.

" Nlicrostructural Models
To date I-HIEM has been used primarily for macroscopic modeling studies. Since the same
fundamental governing equations apply in the micro scale with the exception that stochastic
variation in local parameters must be considered. In addition the properties of the depoit
including crystallographic orientations, the development of grain boundaries and the effects
of localized segregations in the bulk and at the grain boundaries must be considered.

" Induced Codeposition
The problem in above is further complicated when minority species are to be considered. Here
the local chemistry and/or physics of the situation must be incorporated into the boundary
equations.

" Extended Growth
The mathematical formulation has been shown t.o he stable even in the presence of physically
unstable conditions. The local effects of real surface roughness, impurity inclusions and ot her
similar problems can be treated as extensions of the above. From a fundamental point oif
view as well as a practical concern the interaction of the relevant variables is interesting.
Such studies could for example lead to a better understanding of the formation of nodules.
dendrites or other irregularities in printed circuit fabrication.

" Complex Geometries

lip until now primary emphasis in the development of the I-BIEN has been placed on the
mathematical and the algorithmic portions of the code. In order to make the system mocre
"user friendly" and thus applicable to a broad range of problems it was desirable to develop
a menu driven method of readily entering or altering boundary geometries and governing
equations.

" Current Thieves and Auxiliary Anodes

This problem is readily handleable once the problem of assignment of complex geometries is
solved.
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* Stresses in Films/Convective Transport
Stresses in films are often a consequence of sub processes like hydrogen codeposition in elec-

trodeposited films. In such films the bi-harmonic equation can be used to treat these effects.
The bi-harmonic equation should be solvable in terms of the equivalent set of simultaneous

Laplace and Poisson equations. These same equations could be used to study the vorticity

inherent in the convective transport in plating baths caused by rotation of the disk.

Governing Different ial/ Integral Equations

Preamble

The class of problems outlined above are generally governed by linear second order partial differ-
ential equations of the Poisson-type. The material coefficients involved in some of the cases are
functions of the space coordinate (heterogeneity). For such problems the gnverning equation can
be cast, using parameter perturbation technique in a form that is well amenatle t' treAtment by
the I-BIEM. The result will be series of Poisson equations the solution of each of which represer,..

identifiable components of the material inhomogeneity.
There are a number of approaches for treating terms involving time derivatives in transient

problems:

1. The most direct approach is the use of special time-dependent fundamental solutions in the
integral equations for the I-BIEM code. Such solutions are different from the usual logarithmic
solutions used in integral equations derived for straight Poisson-type equations. Ilowever
the use of such complex fundamental equations call for equally tedious implementation of

numerical integrations in the computer program.

2. The unsteady governing equations can he transformed so that time is in effect integrated out

A suitable transformation is the Laplace transform method. This will convert the partial
differential equation into a Itemholtz-type of equation. The fundamental solution in this
case is in the form of a Bessel function. The ruain challenge in this approach is the iriverse
transformation back to the physical time domain. There exist in the literature a number of

efficient numerical algorithm (e.g. Schapery 1962. Bellman em et al 1966, Stehfest 1970) for
performing the inverse transformation.

3. The terms involving time derivatives are replaced by their equivalent finite differences. The
resulting equations are either of the Poisson or Hlelmholtz type and the numerical process
will necessarily involve performing area/domain integrations in addition to the calculations.

carried out on the boundary.

Mathematical Formulation

* Differential Equations

Consider an electrochemical domain Q consisting of the boundary r. in general the process
can be described by the differential equation:

d6
V2 (x, t) 7 r(6, ; .xt) 
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where V 2 is the Laplacian operator in space (x), t is time, k can represent voltage (V),
concentration (c) or temperature (T) while 7 represents some forcing functions which takes
on the following forms depending on the character of the problem:

- Diffusion Problems c c

.7= D (3c
(3t

where D is the diffusion coefficient. In that case eqn( 1) when transformed into the
Laplace domain takes on the form:

- 2( - Ce=o) = 0

in which 3 = v'sD, s is the transform parameter and o f, cexp(-st) dt.

- Convective Problems
- -v-V

where v is the velocity.

-Heat Production (Sources & Sinks)

y(X) X , X')
t

where v; is the Dirac delta function while f, represents the strength of the i-the source
or sink.

Non-linear Problems

The conditions associated with the boundary F can in general be written in the form:

?101(x) I + f(0,x) = 0 (2)

where P is a differential operator, a is a coefficient and f is some prescribed function of r4

On a conductor a = 0 while on an insulator f =_ 0.

Integral Equations

The first task in a BIEM process is to convert the governing partial differential eqn( 1) into
a suitable integral equation. This is achieved by mitiplying the equation by a function g.
integrating the ensuing expression over 12 and invoking the Green'q identities. The result of
such manipulations is the integral equation:

00(X) - (OX') (. XX') -- g (XX') (o(x')) dF(x') g~ / (x, x")YT(x") &I (x"~) (3)

where n is along the unit outward normal to the boundary and a is the Cauchy principal
value of the integration of the Green's function singularity since the following equation is to
be satisfied by g:

CI g (x, x')l -- , X') (

where i - V 2 for Poisson-type problems and ' V2 -3' for Helmholtz-types.
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I-BIEM

Coefficient Matrices

To use the boundary integral equation method the boundary r is subdivided into a finite number
of elements and suitable interpolation functions are chosen to represent the distribution of the
dependent variables on the boundary. For function 0 on r we write:

(x) Z N'(x)0, (5)

where Oi are the values of 0 at the discrete points on the boundary and Ni are shape functions. A
similar expression can be written for sO/dn. To perform boundary integrations we select a finite
number of points to serve as integration origins (x in eqn 3). In most BIEM implementations these
points are located along the boundary segments and usually fall on the nodes formed at element
intersections. In a few implementations (the so-called non-singular formulation) the integration
points are selected outside Q2. In I-BIEM x can be placed on F, inside or outside of £2 The
number of independent integration points selected is the same as the number, M, of unknown t,
and h, = a¢/an on the boundary.

When these integrations are performed eqn( 3) becomes:

Al Af

1:-c a,(17, Y Zbiln C i1, 2, ~M (6)
Y-1 ~ i I 

where

fr aN
b f g(x, x') N, (x') dr

- /3 nd
(I

-- f 9(xx"2(xx"

Whenr the integration points x, fall outside £2 then , 0.
To solve for the unknown $ and 0, at the nodes we start by guessing any initial values. (h and

0' for these quantities. On a conductor (exact 6e) or on an insulator (exact 61) type problems
the known quantities can be iused once and for all in eqn( 6) and the results absolved into the
coefficients c, For linear mixed boundary conditions one will normally eliminate either € or 6, f,r
the other. In non-linear mixed conditions the iterative process readily accepts the incorporation of
any root-finding routine in the solution process as will become clear shortly. When t he guesses are
used in the equation written for the i-th node as origin of integration (see eqn 6) the result is an
error:

M Al

,- b,, , 6e, (7)

We then update the guesses by assuming on:
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" Flux Boundaries (e.g. Insulators)

a1 ,

" Dirichlet Boundaries (e.g. Conductors)

0", A el(9)

* Mixed Boundaries (e.g. Tafel)

where A is in an over-relaxation factor. For a segment with a mixed boundary condition eqn( in)
is to be solved with the relevant prescribed condition as shown by eqn( 2).

The above process is repeated for all points until a suitable convergence criterion is satisfied.

Capabilities of the Developed I-BIEM Code

* Poisson Eqvations
The code handles the solution of Poisson-type equations. This permits the evaluation of
the effect of diffusion convection and time varying problems. Problems other than those
mentioned above which could he tackled with this module would include:

Pulse plating:

Magnetic fields including detailed modeling of recording heads;

Sources and sinks as might be found in problems associated with internally generated
thermal fluxes.

"l .m.elntion

In order to deal with problem- governed hy Poissnn-type equations it was necessary to devPlop
a generalized and optimizeable scheme for subdivision of the domain (however complex) into
readily integrable subdomains. This has been devised to require a minimal intervention from
the user's point of view.

* Generalized Boundary Input
Automatic definition of the position and subdivision of the boundaries for particular problems.
Provides a generalized CAD-like data input approach for a wide variety of problems.

Examples

Conclusions
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